import torch
import torch.nn as nn
# 定义一个包含空洞卷积的神经网络层
class DilatedConvolutionalLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation):
super(DilatedConvolutionalLayer, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, dilation=dilation)
def forward(self, x):
return self.conv(x)
# 创建一个输入张量
input_tensor = torch.randn(1, 3, 64, 64) # 1个样本,3个通道,64x64的输入图像
# 创建一个具有空洞卷积的神经网络层
dilated_layer = DilatedConvolutionalLayer(in_channels=3, out_channels=64, kernel_size=3, dilation=2)
# 将输入传递给空洞卷积层
output_tensor = dilated_layer(input_tensor)
# 输出张量的形状
print("输入张量形状:", input_tensor.shape)
print("输出张量形状:", output_tensor.shape)
欢迎光临 AIHIA梦工厂 (https://aihiamgc.com/) | Powered by Discuz! X3.5 |